
An interpretable machine learning model
for diagnosis of Alzheimer’s disease
Diptesh Das1, Junichi Ito2, Tadashi Kadowaki2 and Koji Tsuda1

1 Department of Computational Biology and Medical Sciences, Graduate School of Frontier
Sciences, The University of Tokyo, Chiba, Japan

2 Data Science Laboratory, hhc Data Creation Center, Eisai Co. Ltd., Tsukuba, Japan

ABSTRACT
We present an interpretable machine learning model for medical diagnosis called
sparse high-order interaction model with rejection option (SHIMR). A decision tree
explains to a patient the diagnosis with a long rule (i.e., conjunction of many
intervals), while SHIMR employs a weighted sum of short rules. Using proteomics
data of 151 subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, SHIMR is shown to be as accurate as other non-interpretable methods
(Sensitivity, SN = 0.84 ± 0.1, Specificity, SP = 0.69 ± 0.15 and Area Under the Curve,
AUC = 0.86 ± 0.09). For clinical usage, SHIMR has a function to abstain from
making any diagnosis when it is not confident enough, so that a medical doctor can
choose more accurate but invasive and/or more costly pathologies. The incorporation
of a rejection option complements SHIMR in designing a multistage cost-effective
diagnosis framework. Using a baseline concentration of cerebrospinal fluid (CSF)
and plasma proteins from a common cohort of 141 subjects, SHIMR is shown to be
effective in designing a patient-specific cost-effective Alzheimer’s disease (AD)
pathology. Thus, interpretability, reliability and having the potential to design a
patient-specific multistage cost-effective diagnosis framework can make SHIMR
serve as an indispensable tool in the era of precision medicine that can cater to the
demand of both doctors and patients, and reduce the overwhelming financial burden
of medical diagnosis.

Subjects Bioinformatics, Computational Biology, Neuroscience, Cognitive Disorders, DataMining
and Machine Learning
Keywords Dementia, Interpretablemodel, Sparse high-order interaction,Alzheimer’s disease (AD),
Computer-aided diagnosis (CAD) model, SHIMR, ADNI, Cost-effective framework,
Machine learning model, Classification with rejection option

INTRODUCTION
Alzheimer’s disease (AD) is a progressive disease affecting memory and other mental
functionalities with deteriorating symptoms over time. With increased human life
expectancy, a large number (11–16 million) of elderly people are likely to suffer from AD
by 2050 (Alzheimer’s Association, 2015). Treatment of AD is often hampered due to the
lack of easily accessible and cost-effective biomarkers with reliable diagnostic accuracy. To
counter this problem, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study
began in 2004 with the intention of collecting and storing a multitude of data spanning
across clinical data, imaging data, omics, gene expression data, etc. Fluid based biomarkers,
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for example, cerebrospinal fluid (CSF) and neuroimaging such as magnetic resonance
imaging (MRI) or positron emission tomography (PET) are highly accurate, but often not
feasible for clinical implementation due to either their high cost, invasive nature, or lack of
specialized clinics offering such services. Consequently, effective treatments are only
available to limited patients. These limitations have significant impact on both the patients
lacking effective treatment for AD as well as the health care system trying to cope with
such a substantial financial burden (Henriksen et al., 2014). Therefore, the goal of ADNI
core research (Henriksen et al., 2014) is to find a cost-effective way (e.g., blood based
biomarkers or cognitive assessment) that can serve as the first step in a multistage
diagnostic or prognostic process followed by most advanced and expensive pathologies
such as CSF or MRI screening. Another important aspect to this issue is that it is not
feasible for a medical practitioner, even as an expert in this domain, to exploit such a vast
and diverse datasets manually. Hence, there exists an urgent need of advanced computer-
aided diagnosis (CAD) framework that can serve as a helping hand to medical
practitioners to better understand the disease and design a patient-specific medical regime.
A line of research has been conducted to devise such CAD methods. Deep learning based
automated diagnosis framework (Fisher, Smith & Walsh, 2018; Lu et al., 2018; Charan,
Khan & Khurshid, 2018) and hyper spectral imaging based methods (Khan et al., 2018) are
examples of state-of-the-art CAD methods. However, it is often the case that a medical
practitioner cannot rely on state-of-the-art CADmethods despite its high accuracy. Due to
the fact that most of these methods are opaque and cannot answer these basic question:
why/how has it reached such a decision and why/how is it biologically relevant?
(Freitas, Wieser & Apweiler, 2010; Freitas, 2006; Burrell, 2016; Ribeiro, Singh & Guestrin,
2016b). Recently, the European Union has issued a “general data protection regulation
(GDPR)” on algorithmic decision-making and a “right to explanation” (Goodman &
Flaxman, 2016) which mandates that the data subject has the right to “meaningful
information about the logic involved in the decision making.” In other words, the GDPR
requires that communication with data subjects has to be made in a “concise, intelligible,
and easily accessible form.” Therefore, to cater to the demand of both, the medical
practitioner (doctor) and the subject (patient), the most effective approach would be to
design a cost-effective multistage CAD framework where the trained model can be
articulated and easily understood by a human. In a sense the model should provide enough
information about how input features relate to predictions and allow one to answer
questions such as: Is the prediction biologically relevant? Which features play the most
important role in prediction? Why am I diagnosed as diseased/normal? Why the
prescribed treatment is the optimum one given my current medical condition? For these
reasons, existing CAD methods involving rule induction algorithms such as propositional
rules, decision tables, decision trees (DT) etc. (Huysmans et al., 2011; Kim, Rudin &
Shah, 2014; Wang & Rudin, 2015) are often preferred with the aim of generating an
interpretable set of “if_then” rules. A line of research (Ribeiro, Singh & Guestrin, 2016c,
2016a; Zhou, Jiang & Chen, 2003) has also been conducted to extract set of human
understandable rules from black box models (neural networks, support vector machines
(SVM) etc.). However, previous research (Huysmans, Baesens & Vanthienen, 2006;
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Johansson, Konig & Niklasson, 2005) on rule induction algorithms and post hoc rule
extraction methods either suffer from very complex rule generation or result in a suboptimal
set of decision rules owing to the nature of optimization problems formulated in their
computational model. Another longstanding concern of a domain expert wanting to
embrace a rule based computation model is its poor representation, as highlighted by
Pazzani (2000) that has had very little effort invested to empirically assess interpretabilty
beyond simply reporting the size of the resulting representations. Pazzani (2000) also
highlighted that there have been no attempt of visual representation, whereas users prefer
certain visualization over mere textual or graphical description. To address the above issues,
we present a “sparse high-order interaction model with rejection option” (SHIMR).

The incorporation of rejection option complements SHIMR to design a multistage
cost-effective framework (Fig. 1) with the notion of refraining from making any
decision (Reject them: R) for those data patients which are hard to classify (patients who
are close to the decision boundary of a CAD model) and make prediction for only those
patients for which the model is confident enough (patients which are far apart from
the decision boundary of a CAD model). Patients rejected due to the low confidence of a
first stage model, trained on inexpensive and easily accessible biomarkers (e.g., plasma)
can further be recommended for second stage of evaluation, involving advanced and
complex screening (e.g., CSF). However, medical practitioners must be able to interpret the
model and identify the variables separately for rejected and classified samples and decide

SHMR AD ADSVM

R

NCNC

Plasm
a

CSF

Figure 1 Cost-effective multistage framework for the diagnosis of Alzheimer’s disease (AD) patients
from normal control (NC). In a clinical setting, all registered patients can undergo an initial screening
using inexpensive and easily accessible biomarkers (e.g., Plasma). Only those patients difficult to diag-
nosis (hence “Rejected: R” by SHIMR) are recommended for invasive and/or more expensive screening
(e.g., CSF). Abbreviation: CSF, cerebrospinal fluid; SVM, support vector machines.

Full-size DOI: 10.7717/peerj.6543/fig-1
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the subsequent course of treatment accordingly. To address that, SHIMR employs interval
conjunction rules that are highly interpretable as well as accurate decision sets.
Decision sets which consist of sets of “if-then” rules are in general simple, concise and
highly interpretable (Lakkaraju, Bach & Leskovec, 2016) as shown in Fig. 2, which was
generated by our visualization module. Another potential advantage of using interval
conjunction rules is that it can capture the combinatorial interactions of multiple factors
which can prove to be beneficial to decipher complex clinical phenomenon such as AD
which is otherwise difficult to explain using single biomarkers as highlighted by
Henriksen et al. (2014).

To validate our model, we considered diagnostic classification of AD patients from
normal control (NC) using ADNI dataset (http://adni.loni.usc.edu/). Experimental results
show that our method can generate highly interpretable as well as accurate machine
learning models which can serve as an indispensable tool in the era of precision medicine.
By considering a hypothetical cost model, we have also shown how our method can lead to
a cost-effective diagnosis framework. A Python implementation of SHIMR can be
downloaded from GitHub (https://github.com/tsudalab/SHIMR).

METHODS
Data
Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment and early AD. The plasma protein data was obtained
from “Biomarkers Consortium Plasma Proteomics Project RBM multiplex data,”
which contains 190 proteins previously reported in the literature to be related to human
pathogenesis. Other data (such as demographic, diagnosis, MMSE and UPENN CSF
biomarkers) were collected from the ADNIMERGE R package (ADNIMERGE_0.0.1.tar.
gz). All these data were downloaded from the ADNI web-site (http://adni.loni.usc.edu/) as
of March 23, 2016.

Model
First, we briefly review existing machine learning based approaches and highlight their
limitation to generate an interpretable CAD model which motivated the design of SHIMR.
Kernel based methods such as SVM have been widely used for last two decades in
several machine learning applications (Schölkopf & Smola, 2002). In SVM, the decision
function is defined as f ðxÞ ¼ Pn

i¼1 aiKðx; xiÞ. Where, K is a called the kernel function
which is in general a non-linear function (Gaussian, polynomial kernels etc.) used
to measure the similarity between any training example x and a support vector xi.
Neural networks (Haykin, 2001) have similar decision functions using different non-linear
activation functions (logistic, tanh, etc.). Due to such a non-linear transformation, it is
often possible to generate highly accurate learning model but at the expense of losing
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Figure 2 Visualization of SHIMR. The selected rules (A), which are generated by SHIMR (B), are
described as an intersection matrix (C). Each row in the intersection matrix (C) represents individual
protein and each column represents interaction among proteins constituting a rule. Proteins selected by a
rule are represented by “light red gauge” (semicircles), whereas the unselected ones by “light green
gauge.” The exact selected range of a particular protein is highlighted by “dark red wedge.” The blue
rectangular box surrounding a set of proteins highlights the selected protein combination (or feature) for
a subject. Blue colored bars above each column show the importance of each rule contributing to the
overall “model score.” The generated model score for a subject (patient) is also highlighted by an “orange
pointer” over a color bar at the top of each plot. This color bar describes the overall range of model scores.
Construction of the intersection matrix from different concentrations of individual proteins is also shown
(D). Each gauge represents the concentration range of a particular protein where the left end represents
the minimum and the right end represents the maximum. The “orange pointer” over each protein gauge
describes the exact value of protein concentration corresponding to a particular subject. Abbreviations:
NC, normal control; AD, Alzheimer’s disease; R, rejected; R1, rule 1; R2, rule 2; R3, rule 3; f1, feature 1 of
rule 1; f2, feature 2 of rule 1. Full-size DOI: 10.7717/peerj.6543/fig-2
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model interpretability (aka “black box” model). To this end, DTs are often used which are
generally interpretable as well as highly accurate (Beerenwinkel et al., 2002). The “if-then-
else” rules employ Boolean clauses with logical AND and NOT operators (∧, ¬) to
constitute complex features. However, complex features in DTs have limited forms and
boosting is often combined (Dietterich, 2000) to circumvent such limitations, but at
the cost of losing interpretability. To address this limitation, SHIMR represents the
decision function as a weighted sum of conjunction rules, each of which is the conjunction
of one-dimensional intervals. A conjunction rule looks like I(1.0 � x3 � 2.0) I(x5 � 0.5)
I(x6 � 0.8), where I(·) refers to the indicator function.

The model generated by SHIMR consists of sets of independent “if-then” rules
which are in general simple, concise and highly interpretable compared to decision list
(Lakkaraju, Bach & Leskovec, 2016). This simple structure allows intuitive visualization
shown in Fig. 2. Complexity of decision list (Blum, 1998; Klivans & Servedio, 2006;
Valiant, 1999; Clark & Niblett, 1989) comes from the “if-then-else” clause of rule
formation. Because of the “else” conjugate one needs to consider all the preceding rules
that have already been turned out to be false to make a decision. SHIMR’s closest ancestor
is itemset boosting (Saigo, Uno & Tsuda, 2007), but it has extended functionalities
for medical diagnosis such as dealing with continuous attributes, rejection option, class
imbalance (Veropoulos, Campbell & Cristianini, 1999), calibration and visualization.

Let H ¼ h1; . . . ; hMf g denote the set of all possible conjunction rules, where each
feature xi is divided into a fixed number of intervals. SHIMR learns the following
decision function from data,

f ðxÞ ¼
XM
j¼1

ajhjðxÞ þ b:

where x is the feature vector of a patient, aj is a weight associated with hj, and b is the bias
term. In learning from data fxi; yigni¼1, the following objective function is minimized
with respect to aj and b.

XM
j¼1

jajj þ Cþ X
fijyi¼1g

fðf ðxiÞÞ þ C� X
fijyi¼�1g

fð�f ðxiÞÞ

where f is a loss function explained in the next section, C+ and C- are the regularization
parameters for positive and negative classes, respectively. This is an extremely high
dimensional problem, but at the optimal solution, there are only a limited number of non-zero
weights due to L1-norm regularization. We employ the column generation method (Demiriz,
Bennett & Shawe-Taylor, 2002) that starts from the optimization problem with no variables
and gradually grows the problem by adding one variable in each iteration. For selecting a
variable efficiently, weighted itemset mining (Uno, Kiyomi & Arimura, 2005) is used. Refer to
the “Supplemental Methods” of Article S1 for details about the learning procedure.

Decision making from f(x) is affected by the cost of rejection. Rejection is not as bad as
misclassification, but incurs some cost as we need a different means for final decision.
Assuming that the cost of misclassification is one, let us define 0 � d � 0.5 as the cost of
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rejection. Bartlett & Wegkamp (2008) showed that, if h(x) = P(y = 1 | x) is the posterior
probability of x being classified to the positive class, the following decision rule
achieves the smallest expected cost,

f �d ðxÞ ¼
þ1 hðxÞ > 1� d
0 d � hðxÞ � 1� d

�1 hðxÞ < d

8<
:

We use the above rule after converting f(x) to the posterior probability via isotonic
calibration.

Loss function
If the cost of rejection is known, it is reasonable to incorporate it in the loss function
f in the learning procedure. We use the following double hinge function proposed by
Bartlett & Wegkamp (2008),

fðzÞ ¼
0 z � 1
1� z 0 � z < 1

1� ð1� dÞz
d

z < 0

8><
>:

where, z ¼ Pn
i¼1 yif ðxiÞ is the classification margin. Figure 3 shows the above function

for different values of d. When d = 0.5, it is equivalent to the normal hinge loss. As d
decreases, the slope in the negative domain becomes steeper, because the cost of
misclassification becomes higher in comparison to d.

RESULTS
Experimental settings
In this study we considered baseline concentration of plasma proteins of 151 subjects, out
of which 97 subjects were diagnosed as AD patients and the remaining 54 subjects as
NC. Here, we considered 14 proteins as the starting set of analytes. This is a collection of
proteins responsible for the AD pathology as reported in literature (Signature #4; Llano,
Devanarayan & Simon, 2013). The entire list of these 14 plasma proteins can be found in
Table S1. We also considered baseline concentration of CSF and plasma proteins of 141
subjects from a common cohort to demonstrate a cost-effective diagnosis framework.
Out of these 141 subjects, 88 subjects were diagnosed as AD and 53 subjects were

z

(z)

(d=0.5)

z

(z)

(d=0.48)

z

(z)

(d=0.4)

A) B) C)
v
f f f

Figure 3 Double hinge loss function at different values of rejection cost d. (A) Double hinge loss at
rejection cost, d = 0.5, (B) Double hinge loss at rejection cost, d = 0.48, (C) Double hinge loss at rejection
cost, d = 0.4. Full-size DOI: 10.7717/peerj.6543/fig-3
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diagnosed as NC. For CSF data we used tau, amyloid-β (Aβ) and phosphorylated tau
(p-tau) proteins. We mainly used the ratio tau/Aβ and p-tau/Aβ as the features for CSF
analysis. Baseline demographic information of all 151 subjects used in the current study is
shown in Table 1. The entire dataset is divided into two stratified groups (two-third
Train and one-third Test) using the same strategy as reported in Llano, Devanarayan &
Simon (2013). Model generation and hyperparameters selection have been done using only
the train dataset, whereas the unseen test data is used to report the classification test
performance. To validate the performance of our method we have reported both internal
cross validation as well as test results (Llano, Devanarayan & Simon, 2013). All the
hyperparameters of the model are selected based on fivefold cross validation by running it
10 times. To report the internal cross validation performance, the training data has
been divided into five stratified groups. At each iteration, four folds are used to generate the
model, which is subsequently used to generate the results for the held out fold.
This procedure is repeated for 10 times and the average results have been reported to
minimize the data sampling bias. Classification performance has been evaluated using area
under the receiver operating characteristics curve (AUC), accuracy (ACC), sensitivity (SN)
and specificity (SP).

Interpretability vs. accuracy trade-off
In this section we will present that our method has the ability to produce comparable
accuracy as other existing non-linear methods without compromising the interpretability
of the model. We will evaluate the interpretability of our SHIMR model both visually
and quantitatively against another interpretable classification model, DT classifier. We will
also present how the interpretability trades off classification accuracy and make a
comparative study between SHIMR and DT. Figures 4A and 4B compare the performance
of our method (SHIMR) against existing methods for AD vs NC classification. It can be
observed that SHIMR can generate highly accurate classification models comparable to
other existing non-linear models. The AUC of internal cross validation was 0.86 with a
high sensitivity of 0.84 and reasonable specificity of 0.69. Next, we will show how
our visualization module complements SHIMR by generating a simple and easily
comprehensible visual representation of the model generated by SHIMR. Our visualization
module can clearly represent the weighted combination of simple rules based classification
model generated by SHIMR.

In Fig. 4C, the selected rules contributing to the model have been described as an
intersection matrix, where each row represents individual feature (protein) and
each column represents interaction among features (proteins) constituting a rule. A blue

Table 1 Demographic information of 151 subjects from ADNI dataset used in this work.

Diagnosis # of Subjects Age Gender (M/F) Education MMSE

AD 97 74.89 ± 7.97 53/44 15.21 ± 3.08 21.25 ± 4.62

NC 54 75.32 ± 5.84 28/26 15.6 ± 2.82 29.06 ± 1.21

Notes:
Standard deviations of variables Age, Education and MMSE scores are shown after “±” sign.
Abbreviations: AD, Alzheimer’s disease; NC, normal control; MMSE, Mini mental state examination.
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BNP ≤ 2.683
entropy = 0.9397

samples = 101
value = [36, 65]

class = AD

BTC ≤ 2.5345
entropy = 0.8256

samples = 27
value = [20, 7]

class = NC

True
ApoE ≤ 1.7519

entropy = 0.7532
samples = 74

value = [16, 58]
class = AD

False

entropy = 0.0
samples = 17

value = [17, 0]
class = NC

A1Micro ≤ 1.0141
entropy = 0.8813

samples = 10
value = [3, 7]
class = AD

entropy = 0.0
samples = 3

value = [3, 0]
class = NC

entropy = 0.0
samples = 7

value = [0, 7]
class = AD

IL-16 ≤ 2.9086
entropy = 0.1831

samples = 36
value = [1, 35]

class = AD

IGM ≤ 0.1611
entropy = 0.9678

samples = 38
value = [15, 23]

class = AD

entropy = 0.0
samples = 35

value = [0, 35]
class = AD

entropy = 0.0
samples = 1

value = [1, 0]
class = NC

entropy = 0.0
samples = 11

value = [0, 11]
class = AD

PLGF ≤ 22.5
entropy = 0.9911

samples = 27
value = [15, 12]

class = NC

entropy = 0.0
samples = 6

value = [0, 6]
class = AD

A1Micro ≤ 1.0966
entropy = 0.8631

samples = 21
value = [15, 6]

class = NC

A1Micro ≤ 0.8808
entropy = 0.3712

samples = 14
value = [13, 1]

class = NC

IL-16 ≤ 2.5665
entropy = 0.8631

samples = 7
value = [2, 5]
class = AD

entropy = 0.0
samples = 1

value = [0, 1]
class = AD

entropy = 0.0
samples = 13

value = [13, 0]
class = NC

entropy = 0.0
samples = 4

value = [0, 4]
class = AD

PLGF ≤ 48.0
entropy = 0.9183

samples = 3
value = [2, 1]
class = NC

entropy = 0.0
samples = 2

value = [2, 0]
class = NC

entropy = 0.0
samples = 1

value = [0, 1]
class = AD

External Validation (Test Set)
Method SN SP AUC

RF 0.87 0.84 0.85
SVM 0.81 0.5 0.80
DT 0.78 0.56 0.67

SHIMR 0.84 0.67 0.81

Internal Cross-Validation
SN SP AUC

Method
Mean SD Mean SD Mean SD

RF 0.79 0.03 0.86 0.02 0.82 0.02
SVM 0.80 0.12 0.64 0.16 0.79 0.08
DT 0.82 0.10 0.64 0.17 0.73 0.09

SHIMR 0.84 0.1 0.69 0.15 0.86 0.09

A)
B)

C)

E)

F) Decision Tree
SN SP AUC

Max Depth
Mean SD Mean SD Mean SD

None 0.82 0.10 0.64 0.17 0.73 0.09
6 0.82 0.10 0.64 0.17 0.73 0.09
5 0.81 0.11 0.65 0.16 0.74 0.09
4 0.82 0.11 0.64 0.18 0.73 0.09
3 0.78 0.11 0.65 0.18 0.72 0.09
2 0.84 0.14 0.38 0.22 0.66 0.10
1 0.68 0.20 0.50 0.23 0.59 0.08

SHIMR
Rule Length SN SP AUC

Threshold
Mean SD Mean SD Mean SD Mean SD

0.0 54.38 4.56 0.84 0.10 0.69 0.15 0.86 0.09
0.1 38.88 3.92 0.84 0.11 0.69 0.15 0.85 0.08
0.2 27.28 4.92 0.84 0.11 0.67 0.18 0.83 0.10
0.3 18.1 4.75 0.84 0.11 0.63 0.20 0.79 0.11
0.4 12.44 4.27 0.83 0.13 0.58 0.24 0.76 0.10
0.5 8.16 3.90 0.81 0.18 0.46 0.29 0.70 0.11
0.6 5.38 2.90 0.81 0.20 0.42 0.29 0.66 0.12

D)

Figure 4 Interpretability vs accuracy trade-off. Comparison of classification (NC vs AD) performance between our method (SHIMR) at zero
rejection rate (RR = 0) and other standard classifiers (RF, SVM and DT) both in terms of (A) internal cross validation and (B) external test set
validation. Visual representation of the model generated by (C) SHIMR and (D) DT, respectively. (C) shows the weighted combination of simple rule
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colored bar (above each column) shows the importance of each rule contributing to the
overall model. Selected features are represented by “light red gauge” (semicircles), whereas
the unselected one by “light green gauge.” The exact selected range of a particular
feature is highlighted using “dark red wedge.” Looking in the clock-wise direction,
each gauge represents the range of a particular feature where the left end represents the
minimum and the right end represents the maximum. This representation highlights how
interpretable our model is by clearly articulating the trained model in terms of the
selected rules, rule importance and the attributes associated with each rule for individual
subject. From Fig. 4C, one can understand that the generated rules are simple and easy to
understand and possible to validate from domain knowledge. Whereas, DT classifier
(Fig. 4D) generates a long chain of conjugated rules for the same classification task.
Comparing Figs. 4A and 4B, one can see that SHIMR can also produce a better
classification AUC (= 0.86) compared to DT (AUC = 0.73). To investigate how
interpretability trades off the classification accuracy we further experimented with the
feature importance threshold and maximum tree depth in SHIMR and DT, respectively,
and the corresponding results are shown in Figs. 4E and 4F. From the results one
can observe that a more interpretable model can be generated at the expense of
classification accuracy. However, in case of SHIMR, it is possible to generate highly
interpretable model (rule length 18) at a reasonable classification accuracy (AUC = 0.79)
which is better than the accuracy (AUC = 0.73) of a full (not truncated) DT. To generate
the full model as shown in Fig. 4C, SHIMR took 17.5–18 s on average, using
standard MacBookPro laptop with Intel core i5, 2.9 GHz processor and 8 GB RAM.

Interpretability vs. accuracy trade-off: comparing SHIMR with CORELS
using plasma data
CORELS (Angelino et al., 2017) is a branch-and-bound optimization algorithm for finding
optimal rule list from categorical data. CORELS leverages a number of theoretical bounds
such as hierarchical objective lower bound, antecedent support lower bound, prefix
length upper bound etc. to obtain optimal rule list more efficiently (both in terms of time
and space requirements) than existing CART and other DT methods. We also
compared the classification performance of SHIMR with that of CORELS using ADNI
plasma data. Comparing the results of SHIMR (Table S5) with CORELS (Tables S3
and S4), it can be observed that CORELS can produce more interpretable model
by generating less number of rules, but at the expense of losing classification accuracy.
Accuracy of SHIMR (acc = 0.79) is much higher than the best achieved accuracy
(acc = 0.69, l = 0.02) obtained by CORELS. The details of parameter settings of CORELS

Figure 4 (continued)
based classification model generated by SHIMR and (D) shows long chains of conjugated rules generated by DT. Interpretability vs accuracy trade-
off comparison between (E) SHIMR and (F) DT. Amore interpretable model can be generated by tuning the weight threshold of features (in SHIMR)
or controlling the maximum depth of tree (in DT) with a compromise in classification accuracy. Abbreviations: RF, random forest; SVM, support
vector machines; DT, decision tree; SHIMR, sparse high order interaction model with rejection option; SN, sensitivity; SP, specificity; AUC, area
under the curve; SD, standard deviation. Note: For results against RF, we have quoted the results taken from Llano, Devanarayan & Simon
(2013). In SVM, we introduced non-linearity by using radial basis function kernel. Full-size DOI: 10.7717/peerj.6543/fig-4
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and how it has been executed to generate the results of Tables S3 and S4 can be found in
the “Supplemental Results” of Article S1.

DISCUSSION
Adherence to the EU’s GDPR on algorithmic decision making and
“Right to Explanation”
The visual representation of SHIMR can also help to explain a specific medical condition
and its associated treatment in the context of precision medicine, as is evident from
Figs. 5A and 5B. The blue rectangular box surrounding a set of proteins highlights the
selected protein combination (or feature) for a subject. The “orange colored wedge” over
each protein gauge describes the exact value of protein concentration corresponding
to a particular subject. The generated model score for each subject is also highlighted by an
orange pointer over a color bar at the top of each plot. From these figures one can
understand that a high negative model score (-1.12) attributes to NC, whereas a high
positive model score (1.10) attributes to AD and a model score close to zero corresponds to
rejected (R) sample. Here, one can also identify the range of features attributed to AD,
NC or R. Looking at such an interpretable CAD model, a doctor can understand the
reason behind classification (NC or AD) as well rejection (R), and hence design a
patient-specific diagnostic regime subsequently. Such a model is also helpful for a patient
to understand his/her current medical condition, and hence, relate to the treatment
prescribed by a doctor. Therefore, SHIMR can be considered to adhere to the
EU’s GDPR on Algorithmic Decision Making and “Right to Explanation”
(Goodman & Flaxman, 2016).

A) B)

Figure 5 Visual representation of interpretable model generated for individual subject. (A) Normal control (NC) and (B) Alzheimer’s disease
(AD). The top 10 rules have been depicted in this figure. The model score is generated as the sum of weights of the selected rules and bias.
Abbreviations: NC, normal control; AD, Alzheimer’s disease. Note: The bias corresponds to the value of bias term of the model (for details refer to
the “Methods” section). Here, we displayed only top 10 rules because of the space constraint. Therefore, sum of the weights of the displayed selected
rules may not match the model score as in the case of (B). This will match exactly if the full model is displayed.

Full-size DOI: 10.7717/peerj.6543/fig-5
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Cost-effective framework
Treatment of AD is often hampered due to the lack of easily accessible and cost-effective
biomarkers with reliable diagnostic accuracy as highlighted in the ‘Introduction’ section.
In this section we will evaluate that how our method (SHIMR) can lead to an
interpretable cost-effective multistage framework for clinical diagnosis by exploiting the
notion of “classification with rejection option”. Here, we propose a cost-effective
framework in the context of precision medicine. Figure 6A describes the effect of rejection
for the classification of NC vs. AD using plasma and CSF data and how it can be exploited
to design a cost-effective pathology for AD treatment. It can be seen that as the
rejection rate is increased, the classification accuracy improves with increased prediction
reliability (increased rejection rate infers higher decision threshold). Starting with an
ACC of 0.74 at no rejection (RR = 0), it is possible to achieve a classification ACC = 0.9 at a
higher rejection rate (RR = 0.38) using plasma data (Fig. 6A: Plasma). On the other
hand, if CSF data is used for the same classification task, a more reliable prediction
(ACC = 0.87) can be achieved with no rejection (Fig. 6A: CSF). Therefore, it can be argued
that those 12 subjects (RR = 0.26) who are rejected using low-cost and easily
accessible plasma biomarkers can now be recommended for a more sophisticated
screening (e.g., CSF biomarkers). It can be observed from Table S2 that 11 out of those
12 subjects can be correctly classified using CSF data. Evidently, this highlights the
efficacy of CSF screening in the current context. However, as highlighted before, it is not
feasible to conduct CSF or other advanced screening for all registered patients due to
the its invasive nature high financial burden or both. To visually depict this trade-off
between correctness in diagnosis and cost of screening (Fig. 6B), we assumed a
hypothetical cost model for plasma and CSF. Considering accessibility and invasiveness of
the screening, we assumed the cost of one CSF screening as 10 unit if the cost of one plasma
screening is one unit (10:1 ratio). With that assumption, it can be observed from
Fig. 6B that instead of using CSF as the first stage screening which would otherwise cost
470 units for #of correct classification = 41, it would be more cost-effective to consider
plasma at the first stage screening followed by CSF screening (cost = 167 units). Basically,
the notion of applying rejection option can help a medical practitioner to decide on a
systematic clinical regime for each patient individually, depending on the confidence of a
machine learning model generated based on particular type of data. Hence, it is possible to
start from a low-cost screening (e.g., plasma) followed by more sophisticated and
invasive screening (e.g., CSF) for those patients only for which the model confidence is not
so reliable. Hence, effectively controlling the rejection rate for a desired level of
AUC (or accuracy) and subsequently applying good source of data, it is possible to design a
patient-specific, cost-effective and reliable AD pathology, catering to the needs of both
the patients and the health care system (Henriksen et al., 2014).

To understand how SHIMR internally works, the accuracy vs. rejection rate trade-off for
the classification of NC vs. AD using plasma data has been depicted in Fig. 6C. It can be
observed that as the rejection rate is increased, more and more data points which are
close to the decision boundary and hence hard to classify get rejected and thus result in an
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improved accuracy after rejection. In order to understand how CSF data can be used to
classify those rejected data points, a 2D decision boundary generated by SVM classifier for
the same classification task has been plotted (Fig. 6D). The data points rejected by
SHIMR using plasma have been highlighted by drawing a circle around respective
data points on the same plot. In Fig. 6D, different decision confidence zones based on
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Figure 6 Effect of rejection option to design a cost-effective multistage diagnosis framework. (A) Model performance in terms of confusion
matrix, accuracy (ACC) and area under the ROC curve (AUC) at different rejection rates (RR) for Plasma and CSF, respectively. (B) Trade-off
between correctness of diagnosis and cost of screening. The numerical value below each bar plot refers to the total cost of screening and the
numerical value above each bar plot represents the number of correctly diagnosed patients. The table below the bar plot describes the hypothetical
cost of individual screening. The table cell entries along each row (Plasma or CSF) represent the cost of individual screening resulting in overall cost
as represented by the numerical values below each bar plot. (C) Accuracy vs. Rejection Rate trade-off for SHIMR using plasma data. (D) A 2D
decision boundary generated by SVM using CSF data. The samples clinically diagnosed as AD or NC are highlighted by red and blue dots,
respectively. The samples rejected by SHIMR using plasma data are highlighted by drawing a circle around respective dots. Abbreviations: CSF,
Cerebrospinal fluid; SVM, support vector machine; SHIMR, sparse high order interaction model with rejection option.

Full-size DOI: 10.7717/peerj.6543/fig-6
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predicted probabilities have been highlighted using different colors. The dark red region
represents high confidence zone for AD with positive predicted probability value
more than 80% and dark blue region represents high confidence zone for NC with positive
predicted probability value less than 20%. The region of intermediate positive
predicted probability values are highlighted with light shades of respective colors. It is
important to mention that SHIMR has the ability to identify the ambiguous low confidence
zones (light red or blue) and refrain from taking any decision (reject) for those data
points falling in that zone. Therefore, high rejection rate conforms to high prediction
probability of the classified samples and hence more reliability in prediction. In a
sense SHIMR makes decision only for those data points for which it is highly confident
(high positive predictive probability) and thus can serve as a highly reliable CAD model
to a medical practitioner (e.g., Doctor).

CONCLUSION
To summarize, we have presented a highly accurate, interpretable and cost-effective
machine learning framework in the context of precision medicine. We have formulated a
sparse high order interaction model with an embedded rejection option and solved it
using the simplex-based column generation method. The learning objective function is
linear and convex, and hence it is possible to find a globally optimum solution. Our
method can generate highly accurate and interpretable decision sets which are sets of
“if-then” rules capturing the higher order interactions among a set of individual features.
By embedding a rejection option and handling the class imbalance with separate
misclassification costs for positive and negative examples, our method can judiciously
mange the uncertainty of the traditional machine learning based model. To validate
the effectiveness of our method, we conducted a diagnostic classification of AD from
NC using an ADNI dataset and presented a cost-effective AD pathology. Our method
performs feature selection and sample selection simultaneously and can lead to a very high
accuracy: ACC = 0.9 (AUC = 0.82) at RR = 0.38 for AD vs. NC classification using plasma
data. This potentially leads to a highly confident prediction model, a very desirable aspect
in clinical diagnosis. We have shown that it is possible to design a patient-specific
systematic multistage cost-effective AD pathology using a low-cost plasma profile followed
by more advanced screening such as CSF. Large scale preventive care is possible by
exploiting such patient specific machine learning framework which leverages low-cost and
easily accessible plasma pathology as an early predictor of AD and subsequently
recommends advanced pathology to those patients only for which it is not possible to
generate desired level of accuracy using low-cost pathology. However, over-reliance on
machine learning based automated diagnosis is a matter of concern as a single “False
Negative” is highly expensive as it is associated with the life of the person being treated.
The obvious social implication could be who or what would be made responsible for
such misdiagnosis. Another concern is be related to the privacy and security of the patient
data used for automated diagnosis. Automated diagnosis relies on electronic health
records, the very construction of which may induce large and systematic mismeasurement,
resulting in bias in automated diagnosis. Interpretable models such as SHIMR alleviate

Das et al. (2019), PeerJ, DOI 10.7717/peerj.6543 14/18

http://dx.doi.org/10.7717/peerj.6543
https://peerj.com/


such concerns associated with automated diagnosis, but do not completely eliminate
the role of a medical practitioner in medical diagnosis. A consensus among machine-
derived diagnosis and diagnosis based on human expertise is desirable. Therefore, human
intervention is inescapable in medical diagnosis where a doctor, the expert in this
domain, can validate the automated diagnosis and use CAD as a helping hand and not as
an entity of complete reliance.
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